An atomic decomposition of distributions in parabolic Hp spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an atomic decomposition in Banach spaces

An atomic decomposition is considered in Banach space.  A method for constructing an atomic decomposition of Banach  space, starting with atomic decomposition of  subspaces  is presented. Some relations between them are established. The proposed method is used in the  study  of the  frame  properties of systems of eigenfunctions and associated functions of discontinuous differential operators.

متن کامل

A New Proof of the Atomic Decomposition of Hardy Spaces

A new proof is given of the atomic decomposition of Hardy spaces Hp, 0 < p ≤ 1, in the classical setting on Rn. The new method can be used to establish atomic decomposition of maximal Hardy spaces in general and nonclassical settings.

متن کامل

Decomposition of spaces of distributions induced by tensor product bases

Rapidly decaying kernels and frames (needlets) in the context of tensor product Jacobi polynomials are developed based on several constructions of multivariate C∞ cutoff functions. These tools are further employed to the development of the theory of weighted Triebel-Lizorkin and Besov spaces on [−1, 1]d. It is also shown how kernels induced by cross product bases can be constructed and utilized...

متن کامل

Decomposition of Spaces of Distributions Induced by Hermite Expansions

Decomposition systems with rapidly decaying elements (needlets) based on Hermite functions are introduced and explored. It is proved that the Triebel-Lizorkin and Besov spaces on R induced by Hermite expansions can be characterized in terms of the needlet coefficients. It is also shown that the Hermite Triebel-Lizorkin and Besov spaces are, in general, different from the respective classical sp...

متن کامل

Heat Kernel Based Decomposition of Spaces of Distributions in the Framework of Dirichlet Spaces

Classical and nonclassical Besov and Triebel-Lizorkin spaces with complete range of indices are developed in the general setting of Dirichlet space with a doubling measure and local scale-invariant Poincaré inequality. This leads to Heat kernel with small time Gaussian bounds and Hölder continuity, which play a central role in this article. Frames with band limited elements of sub-exponential s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1977

ISSN: 0001-8708

DOI: 10.1016/0001-8708(77)90074-3